

Searching for Roman Roads in Scotland using GeoAl

15th May, 2024 Ian Turton

But we all know the Romans only got to Hadrian's Wall!

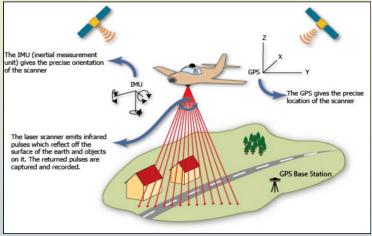
Introduction Roman Roads LiDAR GeoAl Results Conclusions References References

In fact by the time of the construction of the Antonine Wall in 122CE there were roads as far north as Stonehaven.


Known and Presumed Roads in Scotland

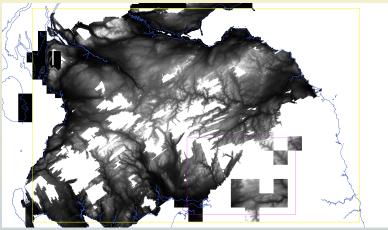
Known and Postulated Roman Roads in Scotland, after Hanson et al. (2019)

- A carefully planned system connecting centres of occupation
- Designed to provided fast communications to neighbouring centres
- Hierarchical classification:
 - Main roads (e.g. Ermine Street) 15-20 metres wide and 1-2 metres high
 - "B-Roads" 3-6 metres wide
 - minor roads 3-4 metres wide
- A ditch on each side for drainage



- Many of the major Roman Roads are still in use today (e.g. M74, A68, A7)
- Smaller and minor roads are mostly lost
- Straight edges to parishes and fields are often clues to their route

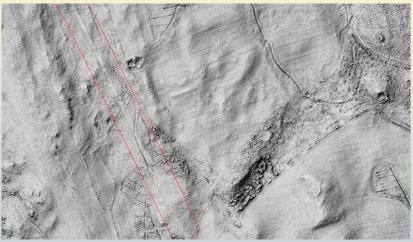
What is LiDAR?


- Light Detection and Ranging
- Used to make high accuracy topographic maps

From He (2016)

Coverage in Scotland

SEPA and DEFRA LiDAR Data


A Roman Road in LiDAR

- Visualisation for Archaeological Topography (Kokalj and Somrak, 2019), we calculate 3 measures and combine them into a single image.
 - sky-view factor which provides illumination related to how much of the sky is visible that is limited by relief (Zakek et al., 2011)
 - the positive openness which highlights the high and low points of the terrain (Doneus, 2013)
 - a normal hill shading algorithm

A Roman Road After Processing

A Roman Road after application of VAT

- Artificial Intelligence applied to geographic problems
- Artificial Neural Networks (sort of like a brain)
- Allows us to do things a (bright) five year old can do
- But much faster on bigger data (with out the tantrums)

An Artificial Neural Network

An artificial neural network, Wikimedia Commons CC-BY-SA Introduction Roman Roads LiDAR GeoAl Results Conclusions References References

- Create a (large) training data set, lots of small images that either show a road or not
- Pass that image through the neural network
- Look at the answer if it is right then update the weights
- Repeat a lot of times until performance stops improving
- Check performance using a validation dataset (training data that has not been used yet)

- Currently, there are no results.
- Generating enough training scenes is proving tricky
- Seems that we don't know where enough existing roads are (that aren't under tarmac)

Further Work

• Track down more roads, that are not scheduled monuments

A section of OS Second Edition 6 to the Mile map, National Library Scotland.

- GeoAI is a reasonable way to discover unknown Roman roads
- Need to find more training examples
- Should allow us to find more of the Roman B-roads

- Doneus, M. (2013). Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. *Remote Sensing*, 5(12):6427–6442.
 Number: 12 Publisher: Multidisciplinary Digital Publishing Institute.
- Hanson, W., Jones, R., and Jones, R. (2019). The Roman Military Presence at Dalswinton, Dumfriesshire: a Reassessment of the Evidence from Aerial, Geophysical and LiDAR Survey. *Britannia*, 50:285–320.
- He, Y. (2016). An Analysis of Airborne Data Collection Methods for Updating Highway Feature Inventory. PhD thesis.
- Kokalj, Ż. and Somrak, M. (2019). Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. *Remote Sensing*, 11(7):747. Number: 7 Publisher: Multidisciplinary Digital Publishing Institute.
- Zakek, K., Otir, K., and Kokalj, Ż. (2011). Sky-View Factor as a Relief Visualization Technique. *Remote Sensing*, 3(2):398–415.